Discrete Mode Laser Diodes emitting at λ~689 and 780nm for Optical Atomic clock applications.

Richard Phelan*, M. Gleeson, J. O'Carroll, D. Byrne, L. Maigyte, R. Lennox, K. Carney. J. Somers and B.Kelly

Eblana Photonics Ltd, Unit 32, Trinity Technology and Enterprise Campus, Dublin 2, Ireland

richard.phelan@eblanaphotonics.com

www.eblanaphotonics.com
eblanaphotonics

Workshop on "Laser Diodes for Space Applications" • 4:00 PM, November 24th 2015 III-V Lab, Palaiseau Cedex, France.

Talk Outline

- Eblana Company background
- Discrete mode laser diode technology overview
- Sr Optical clock transitions & laser requirements
- Characteristics Laser diode at λ ~689nm
- Characteristics Laser diode at $\lambda{\sim}780nm$
- Narrow linewidth laser designs and results
- Summary

Company Background

- Eblana established 2001 with the core technology developed at Tyndall Institute (Cork) and Trinity College Dublin
- Technology to deliver low cost, easy to manufacture single mode laser diodes for Fibre Optic Communications Market
- IP protection with over 15 patents
- Staff 15 and located in Dublin, Ireland.
- Market prominence established in Taiwan and China
- Eblana building volume shipments to 200,000 laser units per month
- Launched Specialty Laser business 2011 (lasers for Sensing applications)
 - Supplying laser diodes at wavelengths from λ~690, 760, 780, 1877, 2004, 2051, 2300, 2400, 3300nm
- EU (FP7, Horizon 2020) / ESA / EI programs funding R&D activities

Laser Diode Packages

Bare Die

TOSA

TO-56

Coaxial Module

TO-9

Butterfly Module

Discrete Mode Technology Overview

Discrete Mode Laser Diode Overview

Discrete Mode Laser Diode ~ 689nm

Optical clock Overview

Optical Atomic Clock (OAC) block diagram

- Ultra narrow linewidth Laser
- An absorbing medium atoms, ions which has to be laser cooled and trapped
- Detection & Electronics to lock the laser to the transition
- Frequency comb to transfer to RF

Ref "Space Optical Clocks (SOC2)" (2007-2010) (www.spaceopticalclocks.org)

Sr Levels Relevant to the Clock

ESA motivation ~Optical clock in space

- Emphasize on and low-power consumption
- Use advanced miniature laser technologies and avoid frequency doubling (SHG) stages.

Implement light propagation in optical fibers

Key laser parameters:

- 1. Wavelength
- 2. Power
- 3. Linewidth

Laser Sub-system	Wavelength	Linewidth	Power
Sr Optical Lattice			
1 st Stage Cooling Laser	461 nm	< 1MHz	150mW
2 nd Stage Cooling	689 nm	< 1kHz	20mW
Repumper Laser No. 1	679 nm	< 100 MHz	10mW
Repumper Laser No. 2	707 nm	< 100 MHz	10mW
Clock Laser	698 nm	< 1 Hz	10mW

Laser emission at λ =689nm [Al(x)Ga]In(y)P material

Grating Design

Laser Manufacture

Wafers are grown by MOCVD on 3" GaAs substrates

3. Cleave and Facet coating

1. Epitaxy

Private and Confidential

4. Test and Packaging

FP Laser Characteristics

DM Laser Characteristics

DM Laser Characteristics

Discrete Mode Laser Diode at 780nm

Laser emission at λ =780nm AlGaAs material

780nm DM Laser Characteristics

Design for Narrow linewidth operation

Laser diode Intrinsic linewidth is governed by the <u>Modified Schawlow-Townes-Henry</u> expression :

$$h_0 \sim \frac{\Delta v_{res}^2}{\lambda P_{out}} (1 + \alpha_H^2)$$

$$\Delta v_{res} = \frac{v_g}{2\pi} \left(\alpha_i + \frac{1}{2L} \ln(\frac{1}{R_1 R_2}) \right)$$

resonator linewidth

Design rules for low linewidth devices :

- •Decreasing the α -factor \rightarrow Achieved Strained MQW
- •Increasing the power in the cavity P
- •Reducing internal losses α_i
- Increasing the laser cavity length

Private and Confidential

Laser Cavity Engineering

Delayed Self-Heterodyne Method.

Linewidth v Laser Cavity Length

Ultra low linewidth performance

Using external feedback orders of magnitude linewidth reduction achieved \rightarrow 5 kHz !!! Private and Confidential

Summary

- Overview of DM laser diode technology
- DM lasers operating in the 689nm region
- DM lasers operating in the 780nm region
- Narrow linewidth lasers ~5kHz demonstrated

Thank you!

